

RESU

de la presión media del aire reducida a O observada en los años 1889-1897, inclusive, en el Instituto a 1168,94 m. de altura, 9°561°, 3 Lat. N.

			10.000				420		2000		1000
		(60	O m	Im+	he	42	1.				
MES	I /t.	2 h.	3 h	012	5 h.	6 A.	7 h.	8 h.	9 h.	10 h	ti h.
Enero	5,41	5/11	4,91	4.93	5,14	5,44	5,85	6,21	6,44	6,40	6,06
Febrero	5,85	5.37	5,14	.5,05	5,30	5,68	6,08	6,43	6,67	6,67	6,27
Marzo	5,64	5,22	4,98	4.96	5,16	5.58	0,04	6,42	6.59	6,54	6,24
Abril	5,62	5,26	4.99	4.94	5,15	8.49	5.94	6,26	6,41	6,32	6,11
Mayo	5.51	5,13	4,55	1.79	1,91	5,25	5,65	5,91	6,07	6,00	5,78
Junio	5,31	4,04	4.07	4,64	4,50	5,10	5,44	5,68	5,85	5,86	5.65
Julio	5.54	5,14	4,90	4,78	4,89	5,15	5.55	5.77	5,96	5,93	5.85
Agosto	5.58	5,20	4.94	-4,87	4 98	5,22	5.55	5.82	6,01	6,06	5.89
Setiembre	5,28	4,89	4,62	4,61	4.77	5,13	5,50	5,79	5.97	5.97	5.75
Octubre	4,90	4,52	4,32	4.33	4,61	5.03	£5,40	5,66	5,90	5,90	5,45
Noviembre	4.95	4.59	4,47	4,37	4,63	5,06	5,50	5,80	6.00	5,91	5,54
Diciembre	5.44	5,01	4,72	4.77	5.94	5.37	5,85	6,23	6,44	6 40	6,08
т. м			120		45	5,29	5,70	6,01	6 19	6,16	10

Para reducir las presiones atmosféricas dadas, a la pesantez normal media, basta rebajar 1,77 mm.

Se notará que la máxima absoluta sucedió en febrero a las 9 de la mañana y la mínima en octubre a las 3 de la tarde con una oscilación de 3,10 mpm. De esta observación he deducido que si la diferencia se multiplica por 0,5613 y el producto se agrega a la mínima, se tiene la presión media; esta comparación la hice con buen resultado en cada mes, advirtiendo que en algunos lluviosos la máxima se veri-

ROLOGIA

MEN

por los Ingenieros Pedro Reitz y Pedro N. Gutiérrez Físico Geográfico de San José de Costa Rica y 284°3'10", 8 Long. W. de Greenwich

	(600 m _{Im} +) P. M.												
12 h.	1 h.	2 h.	3 h.	4 h.	5 h.	6 Å.	7 A.	8 h.	9 1.	10 h.	II h.	12 A.	т, м,
5,58	4,98	G ₄₅	4,16	4,16	4,38	4,77	5,04	5,67	5.99	6, 16	6,03	- 5,85	665,39
5,82	5,23	4,67	4,33	4,33	4,51	4,89	5,41	5.83	6,18	6,38	6,38	6,15	665,61
5,71	5,15	4.59	4.23	4,19	4,38	4,78	5.31	6.74	6,09	6,35	6,36	6,09	665,51
5,67	5,03	4.56	4,31	4,26	4,48	4.95	6,43	5,81	6,12	6,42	6,40	6,08	665,50
5,42	4.91	4.44	4.19	4,20	4.47	4.92	5,37	5.77	6,05	6,22	6,21	5.93	665,33
5.35	- 4.93	4.55	4,27	4,24	4.53	4.84	5,28	5 60	5.80	5.95	5.94	5,60	665,21
5,54	5,13	4.73	4.47	4,40	4 60	5,00	5.42	5.76	6,02	6,17	6,17	5,90	665,36
5,55	5,12	4,70	01.10	4.33	4,58	5.03	5 44	5.81	6,08	6,25	6,20	5.97	665,41
5,26	4,67	4.21	4,00	4,06	4,36	4,78	5,22	5,60	5.90	6 01	5,91	5 62	665,16
4.00	4.26	3,78	3,57	3,78	4.08	4,50	5,08	5,44	5,62	5,79	5,65	5 31	664,92
4,99	4,36	3,84	3,64	3,76	4,06	4,48	5.04	5.46	5,76	5,82	5,60	5 40	664,95
5,52	4.93	4,43	4,17	4,28	4,50	4,92	5,38	5.73	6,16	6,23	6,08	5.76	675,40
5,44	4,89			14,17			5,30			6,15			665,31

fica entre 9 y 10 de la noche en vez de la mañana. También noto que el promedio sacado de las 6 horas de observaciones directas del Reglamento internacional difieren sólo en menos de un décimo de milímetro. Estos datos unidos a los complementarios pueden servir para predecir las tempestades.

San José, 12 de junio de 1913

P. N. GUTIÉRREZ

OGAN

TABLA ALTIMETRICA

Wall Inch				7		JUNE P	-	U		199	Trues.	Corre	
i.	0	1	2	3	4	5	@	7	8	9	D.	por	1"
					.0	1	_===	.0	7826	7796	31	32 0	31.4
30	807.3	8042	SOII	7980	7949	7918	7887	7857				30.8	30 2
31	7705	7734	7705	7675	7646	7615	7584	7557	7527	7498	36i 20	29.6	29,1
32	7469	7440	7411	7382	7354	7325	7296	7268	7240	7212			28.0
33	7184	7155	7128	7100	7072	7045	7017	6990	6962	6935	28	28.5	
34	6008	6881	6854	6827	6800	6773	6747	6720	6694	6668	27	27.4	26,9
	6641	6615	6589	6561	6537	6511	6486	6460	64班	6409	26	20.3	25.8
35	6384	6358	6333	6308	6283	6258	6233	6208	6183	6159	25	25.3	24.8
	6134	6110	6085	6061	6:136	6012	5958	5004	5940	5016	24	24.3	23 8
37			5845	5822	5708	5774	575I	5720	5795	5681	24	23.3	22,9
38	5893	5869			2/90		5921	5498	5475	5453	23	22.4	22.0
39	5658	5635	5612	5589	5567	5544	DE S	2440	3473	3433	7		
	Agenta					30	A Control						- 1
15.16	1.00				CALL!	Cha		Total Vision					N. IN
40	5431	5409	5386	5164	5342	5320	5298	5276	5251	5232	22	21.5	21,1
41	5210	5158	5167	5145	5124	5102	5081	5059	5038	5017	21	20,6	20,3
12	4996	4975	4954	4972	4712	4891	4870	4849	4828	4808	21	19.8	19.4
			4749.4	1720	4705	4655	4665	4544	4624	4604	20	19.0	18 6
43	4787	4767			4504	4485	4465	4445	4426	4406	20	18.3	17.8
44	4584	4564	4544	4524			4270	4251	4233	4213	19	17 +	17,0
45	4386	4367	4347	4328	4309	4289				4024	10	16 6	16,2
46	4194	4175	4156	4137	4118	4099	4081	4062	4043		18		15.6
47	4006	3988	3969	3951	3932	3914	3896	3878	3860	3841		15.9	
48	3823	3805	3787	37hg	375I	3733	3716	3698	3680	3662	18	15.2	14.8
49	3645	3627	3609	3592	3575	3557	3540	3523	3505	3488	18	14.5	14,1
44	3043						10						
	1000					3385	3368	3351	3334	3317	17	13,8	13.4
50	3470	3453	3436	3419	3402					3150	17	13.1	12.8
51	3300	3284	3267	3250	3233	3216	3200	3183	3167				12.
52	3134	3117	3101	3085	3068	3052	3036	3019	3003	2987	10	12.4	
53	2971	2955	2939	2923	2907	2891	2875	2859	2543	2828	16	11,8	(83.
54	2812	2796	2781	3705	2749	2734	2718	2703	2657	2672	16	11,2	10,
	2656	2641	2626	2010	2595	2580	2565	2549	2534	2519	15	10,5	10,
55					2414	2420	2414	2399	2385	2370	15	9.9	9.1
56	2504	2439	2474	2459		2282	2267	2253	2218	2324	(1,15)	9.3	0.0
57	2355	2340	2326	231.	2296		TO SALE	2100	20,4	2080	14	8,7	8,
58	2209	2195	2180	2166	2152	2137	2123				14	8,2	7.
59	2066	2052	2038	2024	2010	1996	1982	1968	1954	1940	14	0,2	1.
	W.							-		1	1		
60	1026	1912	1898	1884	1870	1857	1843	1529	1815	1802	14	7,6	7,
61	1788	1775	1761	1748	1734	1720	1707	1694	1680	1667	14	7.0	6.
62	1653	1640	1627	1613	1600	1587	1574	1561	1548	1534	14	6,5	h.
63	1521	1508	1495	1482	1461	1450	1443	1430	1417	1403	13	6,0	5,
			1366	1353	1340	1327	1315	1302	1289	1277	13	5.5	5.
64	1391	1379		1333	1214	1201	1189	1176	1164	1151	13	5.0	4.
65	1264	1251	1239				1065	1053	1040	1028	13	4.5	4
66	1139		1114	1102		1077				907	12	4.0	4/9.3
67	101	1001	992	use	967	955	943	931			12	3.3	
68	845		872	86ci	548	836	524	812					3.
69	776	765	753	742	730	718	707	695	683	672	12	(3,0	2.
J. C.		1					harrie	1	DUT TO		1000	NET OF	
		THURS		1,			1	580	568		12	2,5	2.
70	660		637		614	603	591				11	2.1	1
71	545	534		SIT	500	489	478	467					
72	433			399	388	377	366	355			11	T,h	
73	322			250	278	267	256				11	1,2	
	213	C. C		181	170	159	148		27	116	II	0.8	
74				74	63	53	42		21		II	0.3	0
75 76	100			4 54	# 42	* 52		73				*0,I	00
76	(* 31							IO	*0.5	
77	*104			*135	*146			***		2.7		*0.9	
78	*207			#238								*1.9	6
79	*310	320	*330	*440	#359	*360	*370	*3Bc	*340	400	10	0.07	180

Para averiguar la altura de un punto con el barómetro por medio de esta tabla altimétrica de J.L. Sanguet, se ve lo que corresponde en la tabla para la presión dada y a ese número se le agrega el producto del coeficiente de la temperatura que está en las últimas columnas multiplicado por los grados de temperatura al aire libre. La primera columna de las dos últimas corresponde a las cinco primeras de la tabla y la segunda a las otras cinco columnas.

En San José se obtiene la altura más exacta promediando el resultado de las observaciones de las 8 a. m. y 121/2 p. m., momentos

de la temperatura y presión media.

Esta tabla sirve para observaciones en una sola estación y corregir las alturas en metros o piés que dan los aneroides y de las cuales hay que prescindir por no ser exactas en Costa Rica si no se hace

la corrección por temperatura al aire libre.

Ejemplo para el manejo:-En San José la temperatura media de las 8 y 12 del día en 9 años fué de 22º,1 C. y la presión media a las mismas horas en 7 años, de 665,4 mm.: para esta presión da la tabla 1071,8 m. de altura, cantidad que generalmente marca el aneroide cuando el cero de la altura coincide con 762 mm. ó 30 pulgadas inglesas. Si a esos 1071,8 m. se agrega el producto de los 22º,1 multiplicados por 4,2 de la última columna, o sea 92,8 m., se tiene para la altura 1164,6 m., cantidad que sólo es menor en 4,3 m. de la altura determinada por observaciones simultáneas hechas, tomando en nsulta Imagen de cuenta las correcciones por latitud y tensión del vapor de agua.

P. N. GUTIÉRREZ

MISCELANEA

Jen de consulta Cuidado con la naftalina

Imagen de consulta En muchas casas usan muy a menudo bolitas de naftalina en los armarios para auyentar la polilla y conservar intactos las vesti-

producto que tiene un olor terrible de que pensación, la eficacia que se le atribuye. El gran químico Berthelot declara que la naftalina está desprovista de toda acción antiséptica y auyenta un número muy pequeño de insectos, especialmente no incompanyo de que la polilla haga sus estrarce un la companyo de politica de companyo de politica de companyo d es pues, un error doméstico. Todo lo que huele mal no es por esto un antiséptico, pero hay más; el dicho producto es peligroso a veces. En la industria, la naftalina se produce en circunstancias muy diversas. estas reacciones se ha notado la toxinidad de los vapores de naftalina.

En las casas particulares, donde se usa mucho la naftalina.

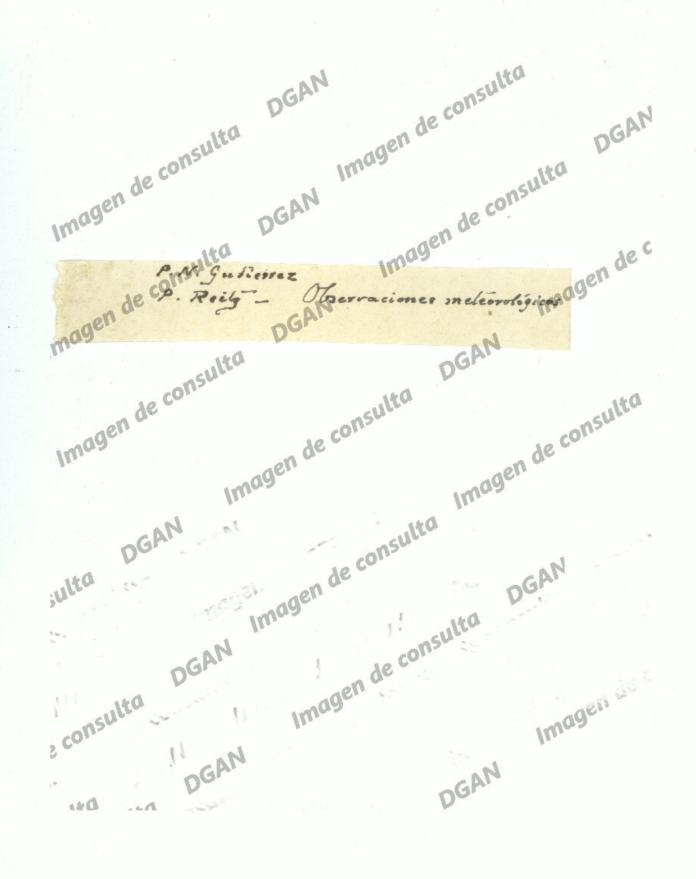
vera de la cabazza descomposición al rojo de la cabazza de la Acción de los vapores de bromuro de phenilbutilena sobre cal viva al vapores de acetilena etc., etc. En todas las fábricas donde se producen estas reacciones se ha notado la toxinidad de los vapores de En las casas carrieras.

y que proceden de las emanaciones deleteras que emite la naftalina. El caso puede ser más grave, cuando uno duerme sobre almohadas, que han conservado olor a naftalina.

Los doctores Gaube y Tubot, en una comunicación a la Academia de Ciencias de París, han probado que la naftalina se descompone al contacto del aire en naftol y en óxido de carbono y todo el mundo sabe lo nocivo que es este último producto.

Es por consiguiente necesario, que nuestras señoras abando nen esta peligrosa costumbre y destierren las terribles bolitas de naf talina de sus casas.

Imagen de consulta DGAN


consulta

st O

Imagen de

DGAN

DGAN

